منابع مشابه
Deep Auxiliary Learning for Visual Localization and Odometry
Localization is an indispensable component of a robot’s autonomy stack that enables it to determine where it is in the environment, essentially making it a precursor for any action execution or planning. Although convolutional neural networks have shown promising results for visual localization, they are still grossly outperformed by state-of-the-art local feature-based techniques. In this work...
متن کاملUnDeepVO: Monocular Visual Odometry through Unsupervised Deep Learning
We propose a novel monocular visual odometry (VO) system called UnDeepVO in this paper. UnDeepVO is able to estimate the 6-DoF pose of a monocular camera and the depth of its view by using deep neural networks. There are two salient features of the proposed UnDeepVO: one is the unsupervised deep learning scheme, and the other is the absolute scale recovery. Specifically, we train UnDeepVO by us...
متن کاملDeepVO: A Deep Learning approach for Monocular Visual Odometry
Deep Learning based techniques have been adopted with precision to solve a lot of standard computer vision problems, some of which are image classification, object detection and segmentation. Despite the widespread success of these approaches, they have not yet been exploited largely for solving the standard perception related problems encountered in autonomous navigation such as Visual Odometr...
متن کاملRough Terrain Visual Odometry
We present an integrated system to localize a mobile robot in rough outdoor terrain using visual odometry. Our previous work [1] presented a visual odometry solution that estimates frame-to-frame motion from stereo cameras and integrated this incremental motion with a low cost GPS. We extend that work through the use of bundle adjustment over multiple frames. Bundle adjustment helps to reduce t...
متن کاملLearning Visual Odometry with a Convolutional Network
We present an approach to predicting velocity and direction changes from visual information (”visual odometry”) using an end-to-end, deep learning-based architecture. The architecture uses a single type of computational module and learning rule to extract visual motion, depth, and finally odometry information from the raw data. Representations of depth and motion are extracted by detecting sync...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Pattern Analysis and Machine Intelligence
سال: 2020
ISSN: 0162-8828,2160-9292,1939-3539
DOI: 10.1109/tpami.2020.3014100